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We propose in this paper a synthesis of both the hydrodynamic and assimilation
aspects of the quasi-linearized tidal model developed by the Grenoble tidal group.
Starting from the hydrodynamic model, which is represented by a linearized wave
equation, we emphasize the different steps taken to lead to the final finite-element
discrete system of the coupled hydrodynamic and assimilation problem. As the hy-
drodynamic formulation has been already detailed in many previous publications,
we insist especially on the formulation of the assimilation part. The assimilation is
based on a general inverse method usindg. amorm-type cost function, weighted
by the use of inverse error covariance operators. The full implications of choosing
this kind of cost function are discussed. The least-square problem thus defined is
developed by using the representer approach. The representers are a finite set of
functions defined on the modeling domain. The solution is sought as a perturbation
of the solution to the prior model and it is shown that this perturbation belongs to the
vector subspace of finite dimension generated by the representers (i.e., it is a linear
combination of the representers). The assimilation problem then involves first solving
two systems, called backward and forward systems, to determine the representers.
An alternative formulation of the boundary conditions associated with the forward
system is developed, as the original one is somewhat unsuited to the finite-element
discretization. The three resulting systems are solved under a variational formulation
identical to the one of the hydrodynamic problem. Discretization of the assimilation
problem, which is entirely described in the general continuous case, is performed as a
last step, consistent with that of the hydrodynamic problem. Finally, the coefficients
of the linear combination giving the model perturbation are obtained by solving a
K x K system. As an illustration, we propose a realistic application performed on
the M, tidal elevation problem in the South Atlantic by assimilating tidal gauge data
in a solution of the Grenoble modelg) 1999 Academic Press
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1. INTRODUCTION

A hydrodynamic model for oceanic tides has been under development for about 20 y«
by the Grenoble tidal group. Many papers have been published regularly concerning
model itself and its applications, as it has evolved from regional seas to global ocean t
modeling, where both the latest model improvements and results have widely been discu
in the past years (see, for instance, [1-4]). However, recently a major step was takel
implementing assimilation techniques in the global modeling scheme and this resulte
the production of the FES94 [5] and FES95 [6] solutions. At this point, and because of
complexity of the modeling processes, we believe that it is time for a formal descripti
of the entire model. This is the purpose of this paper. It consists in a summary of
hydrodynamic model formulation, a detailed description of which is available from previo
publications, plus a precise description of the assimilation model formulation. There i
strong demand for such a detailed description, essentially because oceanographer
now choose from among different tidal models, which can be purely empirical, like sor
new TOPEX/Poseidon-derived models, or of mixed origins like the OSU model [24], t
Boulder model [7, 8], or the Grenoble model (from which FES94 and FES95 solutions
derived). Thus the aim of this paper is to propose a formal overview of the basic equati
and their mathematical and numerical treatments in order to provide a clear, consistent
of what the Grenoble model is now.

Despite the fact that the goal of the Grenoble model is to propose an accurate descriy
of oceanic tides based as much as possible on hydrodynamic considerations only, we
found it necessary, in the present state of the art, to use assimilation techniques. Sinc
first version of the global solutions, we have used a technique acting only on the o
boundary conditions [4] which has proved to be efficient in improving the accuracy of t
solutions, but not sufficient, essentially because the tidal forcing that we prescribe inside
domain is unchanged by this technique. The possibility of removing the remaining lar
scale errors from the model by using altimetric data without affecting the quality of o
solutions in the coastal and shelf areas has already been shown (see [9]). Data assimil
can be seen as seeking the best compromise between fitting observations, which we be
to be a fair measurement of the sea truth, and prior knowledge, which we believe to
a fair picture of the tidal mechanics. As will be shown in this paper, we have chosen
general inverse approach combined with a penalty function basedlopremrm, leading to
a least-square problem. The general inverse approach has been extensively used in ph
problems and is very well documented (see, for instance, [10]). The motivation for us
the general inverse approach is that basically we assume that we are better able to de:
the hydrodynamic model’s errors on the forcing term (i.e., the tidal potential) and bound:
conditions than on the solution itself (i.e., the error on the tidal elevations derived frc
the model). The motivations for choosing the norm to design our penalty function are,
first, that it involves solving a linear system and, second, that it can be justified in ter
of statistical models (see, for instance, [10, 11]). Moreover, nudging techniques (usec
Schwiderski [12] and Kantha [7]), objective analysis, or, more generally, data inversion
used by Jourdiet al.[13] and modal basis function methods (as described in [9]) appear
be a particular case of the general inverse approach (asin [14, 15]). The choice of the pe
function and the description of the model and observation error covariance are clearly
critical points of the method. A previous assimilation scheme, also based on the gen
inverse method, has been specifically developed to be applied to the Grenoble tidal m



DATA ASSIMILATION IN A WAVE EQUATION 3

and is described in [16]. However, its formulation was found to be limited in practice wt
applied to oceanic basin-wide domains by the use of necessarily greatly simplified ¢
covariance (i.e., spatially uncorrelated) related to the tidal forcing terms. Thisis why we f
decided to develop the assimilation model presented in the following. In order to reduce
dimension of the data functional minimization problem, we use the representer techni
first introduced for data assimilation in tidal models in [17]. This powerful technique r
only rules out the practical need of using only oversimplified covariance, but it allows
to describe the full assimilation procedure in the continuous space and is ideally suitel
the variational formulation of the minimization problem.

2. THE CONTINUOUS ASSIMILATION FORMULATION

2.1. The Hydrodynamic Model

The model’'s hydrodynamic equations are based on the classical spherical shallow \
equations. They basically consist of the vertically averaged Navier—Stokes equations, v
horizontal viscosity has been neglected. Dissipation is assumed to take place in a
boundary layer located at the ocean bottom. Nonlinearities arising from advection te
and dissipation are handled by a perturbation approach, which leads to a quasi-linea
harmonic equation system (we are ignoring here some nontrivial developments, whict
be found in [18]; however, for short, it is assumed here that we are able in some wa
linearize the friction term, with coefficients varying with space: at first order, the advect
terms of the astronomic waves are neglected, but appear as the forcing terms in the non
tides equation, which achieves full linearization of the equations). Tidal forcing is given
the gradient of a tidal potential which includes the astronomical potential plus the solid t
loading, and self-attraction effects. The unknowns of the system are the horizontal veloc
and sea level elevation. Because we have eliminated time from the tidal equations (thar
linearization), we can formulate the real cosine and sine problem into the spectral com
system and thus solve linearly a given tidal wave independently of the others. Consequ
we will not distinguish the tidal wave by any specific index. The 2D momentum equati
are derived from the vertically averaged horizontal 3D momentum equations. The clas
hydrostatic pressure distribution is assuniedepresents the forcing term according to the
wave we intend to solve. For the main oceanic wa¥ess the gradient of the total tidal
potential (which is in fact a combination of the astronomic potential, the solid earth ti
and their perturbations due to loading and self-attraction effects). In the following, the e
nature ofF can be ignored. In the horizontal axis, the linearized momentum equations
given by

. , da
(ja)—}-l’),u-i-(l’ — f)v+gaCOS(p87 —gF)L (1)
" H n 18a
r"+ Hu+ (jo+r"w+g-— =gF, (2)
aody

wherew is the complex tidal elevation whengx, ¢, t) = Re(a (A, ¢)€“Y); uis the complex
barotropic tidal velocityu = («, v); a is the mean radius of Earth; ¢ are longitude and
latitude; g is the gravity constant is the mean depthy is the tidal pulsation;f is the
Coriolis factor;F is the complex tidal forcingF = (F,, F,); andr,r’,r”, r” are friction
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coefficients, where friction

re, o) r'(, e
', e) r”(e) |

The nondiagonal form of the friction coefficient matrix is due to nonlinear interactio
between the different tidal waves. In short, the friction of a given constituent is due to
own currents interacting with a bottom boundary layer which itself is generated by one
two dominant waves, i.e., waves whose currents have a much larger amplitude locally t
those of the other constituents. In our simulatiod® (the mean lunar semi-diurnal tide,
with a period of 12 h, 25 min) anid 1 (the luni-solar declinational diurnal tide) play the role
of the dominant waves generating background turbulence in the ocean bottom boun
layer, on the basis of their leading position (in terms of amplitude) in both species (diur
and semi-diurnal bands). In other words, M@ tide is responsible for the bottom boundary
layer where the semi-diurnal tides are larger than the diurnal tides, andlthige plays
this role in the opposite conditions. (1) and (2) can be summarized in the form

Hu=M{NVa —-F), 3)
where
M — gH{iw+1r" f —1’ _Jio+r 1 —f
TOOA|=f=1" iw+r T+ f iw+r”|

The continuity equation is obtained by expressing the mass conservation of a fluid v
uniform density. It is linearized by applying a perturbation technique similar to the ol
used to linearize the momentum equations. As with the momentum equations, the ri
hand term depends on the origin of the computed wave. In short, it is equal to zero in
case of the so-called oceanic tides (I, S, K1, etc.), but not in that of tidal waves of
nonlinear origin (likeM4, M S, etc.). For convenience, and despite the fact that our maij
interest is the study of oceanic tides, we will keep a general form of the continuity equat

iwa+V-Hu=F,. (4)

The tidal problem is solved numerically, which obviously implies a particular choice
discretization. In the case of gravity waves, dissipation processes due to bottom fric
actually take place mostly in the shallowest areas such as the continental shelves. In
areas, the typical wavelengths are dramatically shorter than in the deep ocean and so s
resolution of the discretization must be considerably increased in such regions. A unifc
high resolution mesh would mean having to solve a huge numerical system, even in regi
applications, which is clearly incompatible with the goal of modeling the oceanic barotroj
tides on a global scale. This is why we use the finite element discretization, which allc
us to constrain the local spatial resolutions by criteria based on dynamic consideration
has been shown by Lynch that direct resolution of the full set of equations, where eleva
and velocity are independent unknown quantities, may lead to an ill-conditioned syst
[19]. In order to avoid this particular problem, and because our first interest is to determ
tidal elevations, the model is confined to the so-called wave equation which is obtainec
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eliminating velocity from the continuity equation. Finally, our hydrodynamic model can
written by applying the wave equation at any poirdgf our modeling domaiz,

Sa](X) = %(iwa + V- -MVa)(X) =y (X) = %(Fa + V- MF)(X), (5)

wherex is a normalization factor = wa?(r/180~2. The boundary conditions along the
open limits are the Dirichelet-type conditioms= «, 0N 92, and those along the rigid limits
are the Neuman-type conditiohku-n=M (Vo — F) - n=00nd .. As will be discussed
below, this system is finally solved in its variational formulation discretized by the usi
the FE technique (triangular elements, Lagrange-P2 approximation). In the following,
solution of this system will be called the prior solution. Once the elevation is solved,
can derive the associated tidal velocities by applying (3).

2.2. The Assimilation Model

In the following, we will disregard the matter of model precision, and confine ourselve:
the problem of model accuracy, which implies that we can obtain the true solution provic
we use the true input parameters (i.e., the true right-hand terms in our equations an
true boundary conditions), or, in other words, the necessary simplifications of the m
(such as bottom friction parameterization, linearization) have a negligible influence. -
is a significant hypothesis, but it is well justified if one has more confidence in the de:
of the model than in the input parameters, which is exactly the case in this paper. The
step after solving a physical problem is to validate its solutions, in terms of precision
accuracy. One favorite modeling technique to evaluate accuracy is to compare the mc
diagnostic outputs with observations. If the validation tests show that the model fits
prior requirements, it is well done. Unfortunately, comparison between the model and
observations mostly shows unsatisfactory misfits, which indicates that the model an
the data are not accurate enough. But it is indeed a very narrow way of thinking to
observations only for diagnostic validation. After all, they represent valuable informat
which may be used to improve the model and we would like to assimilate this into
model. As the model is in some ways self-consistent, a general problem involving
model equations plus additional constraints designed to make the model fit the observe
exactly would be overdetermined. So data assimilation basically consists in seeking the
compromise between a relaxation of the prior solution and misfits with observations. In
data assimilation is a formal approach of the natural, empirical process of comparing m
and observations, and deciding from these two sources of information where sea truth st
given the confidence we have in these two sources. This kind of problem has been la
discussed and studied in the fluid mechanics domain. In this paper, we will present a
assimilation process based on the general inverse technique, using a least-square apj
The least-square approach involves seeking the model perturbation that minimizes &
function which is based on twb, norm-type terms

J(model solution perturbation

__ (misfits with the datg | (departure from the prior solutiph
" (data error rangé (model error range@

: (6)

where the first right-hand term denotes the difference between a new solution, consi
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in a relaxation of the prior model solution, and the observations weighted according to
confidence placed in them, and the second term denotes the departure from the prior n
solution weighted according to the confidence placed in it. The latter term is also of
called the regularization term. The least-square method is probably the most widely u:
essentially because it then involves solving a linear system. Moreover, Tarantola [10]
shown that, under certain conditions (linear, finite dimension model, Gaussian distribut
of the model and observation errors), it also can be fully linked with a probabilistic approa
To work out our assimilation, we do not strictly need to justify a particular distribution of tr
observations and model errors. All that we need is to decide on a set of reasonable we
to use in the cost function. However, it is of great help to relate the cost function des
with a probabilistic point of view. Indeed, by using a cost function as in (6), we intrinsicall
assume that, at any point of the modeling domain and for a given model parameter,
probability distribution for this parameter, if it is to be exact, is a Gaussian one centered
the prior model value. In other words, if we had a mean to determine a large unbiased s
realizations of this parameter, we would statistically obtain a Gaussian distribution cente
on the prior model parameter. So the prior model parameters are not assumed to be the
but the best unbiased estimator of the truth. A similar interpretation can be made of
observations. The intrinsic assumption of Gaussian distribution is due to the choickof ar
norm. Despite the fact that Gaussian distribution is probably one of the physicists’ favori
especially when the actual distribution is not known, it should be handled with caution sir
it assumes a rapid decrease in probability for the largest errors. Such an assumptior
easily break down in real applications. For instance, in the tidal field, we know that me
observations show serious errors due to erroneous phase archives. In this paper, hov
we will assume that the Gaussian distribution of observation and model errors is ma
satisfactory. Additionally, the meaning and justification of the probabilistic interpretatic
of the assimilation problem have been extensively discussed by different authors alre
so we will simply recall here the main hypotheses and results. The reader can usefully r
to [10] for more details. As pointed out above, we assume that our model errors are
to faulty forcing terms and boundary conditions, the departures of which from prior moc
values, denote® v, o, ), are given by

VX € Q, 3P (X) = ¥ (X) — Yprior(X)
VX € 0, Jap(X) = ap(X) — Aoprior(X) (7)
VX € 0L, D (X) = [H (U — Uprior) - N](X).

The resulting tidal elevation field is given by
VX €Q,  a(X) = dpior(X) + Sar(x), (8)

wheres« is the solution of the linear system
] (x) = sy (x) 9)

with the associated boundary conditidas= o, 0N32,, andM Véa - N =5P on 9 Q.. We
assume thasyr, S, @) is a set of three independent random fields. As mentioned aboy
they are assumed to be zero-averaged. The assimilation solution is defined by the parti
realization of these random variables, which minimizes the cost fundtiprrepresents
the error pending to the right-hand side of the wave equation. It contains the error du
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linearization of the mass conservation law, the error in the divergence of the momer
equation forcing, and other error ternia. represents the error in our previous knowledg
of the tidal elevation along the open boundarbeb.represents the error resulting from two
different sources. The first one is due to an erroneous nonflux condition along the cl
boundaries. This can occur when the model limits do not fit the real coastlines well. Du
the FE’s ability to follow coastlines very precisely, it should not be considered, except
significantly large river delta limits, where no open boundary condition could reasone
be set (due to the lack of tidal data for example) or for the limits of significantly large b:
which are dry during the low tide cycle. The error in the nonflux condition is thus very lo
and can be mostly disregarded, except in some very special casésb Bigo represents
the error due to the flux of momentum equation forcing. Using the same forcing te
F to set wave equation forcing and closed boundary conditions, the problem of a pos
correlation betweedd ands will occur, and consequently the validity of considering ther
as independent random variables. Nevertheless, this affects only the theoretical signific
of the definition of the penalty function, and we assume that this problem can be igno
Only in practical applications must the estimated covariance functions correspa@ming
and§y be consistent. Following [24], we assume that the model error statistics car
described approximately by their error covariance functions

Ci (X1, X2) = E[8v (X1)8Y (X2)*] V(X1,X2) €2 x Q
Co(X1, X2) = E[Sag(X1)8ao(X2)*]  V(X1, X2) € 092 x 320 (10)
Ce(X1, X2) = E[§P(X1)d D (X2)*] V(X1, X2) € 982 X 3L,

whereE is the mathematical expectatidrdenotes the conjugate value (transpose conjugs
if applied to a vector). Let us suppose that we have a $€talfservations. As with the model
errors, we suppose thdy is the best unbiased estimator of the observation (measurems
of ayrye atxx. We then can define the random variable representing the measurement er
thekth observation site, i.e., the departure of an actual measuremdram the “central”
valuedy:

& = My — dy atXxg. (12)

As with the model parameter errors, we assume that we can, at least approximately, de:
its covariance:

Ce (Xk, X1) = E[eke]. (12)

In practiced andc, can be seen as representing the known statistics of our instrumen
measuring process. As the four random variables are independent, their cross-coval
is equal to zero. In order to simplify the discussion, we will consider only sea elevat
harmonic observations in the following. It should be noted that this has no influence
the theoretical development. The data functign associated with the actual observatiol
dk made at locatiorxg, projects the tidal elevation field in the observation space. In o
case, because the solution in which we want to assimilate data is a tidal elevation field
simply an interpolation of the solutianat locationxy. Let us define a penalty functioly
for the observations,

Ju(e) = €'C e, (13)

wheree=d — L[a] =[dk — Li[e]], Ce =[C. (Xk, X)]-
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The probability density for the measurement of a fietd coincide with the measurement
of arye is then given by

exp(—Jg(@)). (14)

1
Pl = R detc,

Letus now define a penalty functidg, for the model. First, for each model error covariance
we define the corresponding linear covariance operator acting on aféid defined by

Ci:v — Gyl Ci[W](X)=/QCi(x, Xy (X)ds

Coia > Cola] Cola](x) = Co(X, XY (X)) dl (15)
3%

Ce:® —~ Co[D] Cc[®](x) = / ce(X, X))o (x)dl.
9%

Note that the covariance operators are self-adjoint for the canonical scalar products.
instance, this yields fo€;:

(W, Cilval) = /Q 1) CiY2] (%) ds = /Q (Yl 0O 200 ds = (G [yl o).

(16)
Thus Jn, take the form
In(a) = / AY*(X)CHY] () ds+ / 3ok (X)CoH a o] (%) d
Q 990
+ / $O*(x)CsD] (%) dl. (17)
02

We assume here that the covariance operators have all a well-defined inverse. This
nontrivial assumption, in particular if the error covariance is more or less uniform (in tl
case of highly correlated errors). The probability density for a set model parameters tc
the true model parameters is given by

Pmd = AeXp(—Im(@)), (18)

where A is a normalization coefficient. They both represent our two initial independe
sources of information, which we want to combine. Taken separalghglls us that the
setd of observation values is the best estimator of the sea truth at the observation sites,
Jm that our prior model is the best estimator of the possible parameters. Combining
sources of information involves determining the field that produces the maximum likeliho
for the probability density given by

pmd = Bexp[—(Jy(a) + In(a))], (19)

whereB is a normalization factor. In other words, the assimilation solution is obtained |
minimizing a penalty function defined by

J(o) = Jy(@) + Im(@). (20)
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The solution can be obtained by many different techniques. In practice, discretizing
assimilation problem by straightforward techniques requires us to express the invers
variance functions explicitly. In most cases, amodeler has only an (approximate!) knowle
of the covariance functions themselves, based on statistical considerations for instanc
we will usually establish the covariances, and then inverse them. If the number of ¢
putational nodes is large, and if correlation lengths are not short compared to the sy
resolution, this will result in the inversion of huge, nontrivial matrices. This has been

reason for former data assimilation to be performed by poor, physically unacceptable
variance functions, artificially simplified by shortening the correlation length. We found t
approach to be unsatisfactory, as the quality of the assimilation depends essentially c
quality of the error descriptions via the covariance functions. For instance, if the mod
contaminated by a large wavelength error (i.e., the spatial scale is of the order of the do
size or greater), one can expect to improve it by using only a few observations, anc
model’s error covariance functions will take care of “propagating” the sparse informat
throughout the domain. However, by using simplified, decorrelated covariance, this ca
be done, and it becomes more likely that the solution will be modified only in the vicinity
the observations, creating artificial peaks around observation locations and leaving th
of the prior solution unchanged. So not only does the solution not improve very mucl
is also degraded by the introduction of nonphysical features. It must be clearly unders
that the role of the covariance functions is essential, particularly in nonideal (say pract
applications, where observations are very likely to be poorly distributed over the mode
domain.

2.2.1.The representer techniqueThe principle of the representer technique, adapted
the tidal problem, has already been extensively presented in the literature (see, for inst
[20-24]) and so only the basic aspects of this technique will be recalled here. Let us d
the Sobolev spackl;(©2) of the complex-valued functions, the first derivatives of whic
are square integrable in the modeling donmirH; (2) represents the space of the possibl
tidal elevation. As will be stated in Section 3, the existence and uniqueness of the v
equation solution (in its variational formulation) are guaranteed by certain assumpt
of smoothness and orders of magnitude for the friction coefficients, depths, and for
terms. With additional assumptions it can easily be seen that the existence and uniqu
in H1(2) of the assimilation problem solution are similarly guaranteed (see end of Sec
2.2.3). The penalty function defined by (20) is a positive-definite quadratic form from wh
we can define an inner product for the spab€Q):

(s, sl = /Q (S[ea])*C; [ Slr2]] s+ / o:Cy ezl d

aQ

+ (MVay-n)*C M Vay-nldl. (21)
Q%

The cost function can then be expressed as
J(@) = (d—La])*C(d - L[a]) + llo — apriorl|&- (22)

With certain assumptions regarding the regularity of the covariance operators, the i
product given in Eq. (21) is an inner product fdrl(22). H1(Q) is then a Hilbert space
(amore detailed justification can be found in [24]). Thus, becaudeghenctional is linear,
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there exists a fieldy in H1(2) such that
Va, Lkla] = (rk, a)c, (23)

wherery is the so-called data representer associated with the data fundtigrfatovided
that the representers are linearly independent (which we will assume), they form a bas
a vector spac¥ . Any field of H;(2) can then be expressed as

Vo, o =oy +aye, (24)

whereV is the vector space orthogonalo The following two properties of this break-
down are then noted:

leellg = llev & + Ny 2112 (25)

Lkla] = (rk, @)c = (rk, av)c + 0= Li[av]. (26)

Hence the orthogonal term in (24) does not affect the first term of the cost function, ¢
it can be arbitrarily chosen as being equal to the zero field, so it minimizes the right-he
term in (22). The solution is then sought as a linear combination of the data represen
i.e.,

K
a(X) = aprior(X) + Z bri (). (27)
k=1

At this point, we have reduced the minimization problem from an infinite dimension to
finite dimension, withK degrees of freedom. The cost function simplifies to

J(@) = (d—L[a])*C;}(d — L[e]) + b*RbD, (28)

whereRj = (ri,rj)c =Li[rj]=(rj.ri)¢ = LT[ri]. R is the hermitian representer matrix.
Theby coefficients which minimize (28) are thus solutions of #hex K system:

(R + Cs)b = eprior~ (29)

The representers are obtained by solving (23), andtbeefficients are then computed
from (29). The error covariance matrix associated with the assimilation solution is then

c=R'+cH"

(30)

As will be shown later, the posterior covariance matrix is a very interesting product of t
assimilation. Among other things, it enables us to diagnose the consistency of the p
covariance given for the observations and the model.

2.2.2. A simplified example. At this stage the theoretical problem is completely defined
Nevertheless, the formulation may obscure the basic simplicity of the assimilation moc
In the following, we will restrict ourselves to the particular case where the only type
assimilated data are tidal constants. This is not a severe restriction, as most of the acc
tide-related observations we know of are tidal elevation observations and/or model-grid
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solutions, and this has the great advantage of allowing an explicit expression for the
responding representers (in fact, this is the case when data are point-wise estimates
hydrodynamic model variable, i.e., the tidal elevatiom our case). First, we temporarily
consider a simplified model (i.e., without boundary conditions)

VX e Q, Fa](X) = ¥ (X). (31)

It will be recalled that the hydrodynamic operatis assumed to be exact and all elevatio
errors are due to errors in the forcing, i.e.,

Ssa] = 8. (32)

The elevation error covariance function throughout the domain, including the domain bot
aries, is defined as

Vix,X)eQ x Q, Coo(X, X)) = E(Sa(X)8a*(X)). (33)

As indicated previously, a linear opera€ris associated with the error covariargex, X').
The penalty function is given by

J(@) =€Cle+ / SY*(x)C sy (%) ds. (34)
Q
Similarly, we can define an operatoy,,
Coui 0> Col0]  Col0](X) = / Caa (X, X)O(X) ds, (35)
Q

wherec, ,, is the error covariance function associated with the tidal elevation. Let us de
S° the adjoint operator oB (adjoint for the canonical scalar product) by

V(a,B),  (Slal, B) = (o, SUIB])- (36)
Then, as can be easily demonstrated GhandC, operators are related by
V¥, Gily] = (SoCyoSN[Y] (37)
Thus the penalty function can be expressed equivalently by
J(@) =€C e+ / SY*Csy]ds=e'C e+ / sa*C,[8alds.  (38)
Q Q

Lk, the observation operator associated with a tidal observati ean be written in the
general form

Li: o = Lg(a) = / U (X (x) ds, (39)
Q

wherep is allowed to be a Dirac function. In the context of the restriction mentioned abc
(observations consist only of tidal elevation data), we can write

Li(@) = a(Xq); (40)
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thusu takes exactly the form
Pk (X) = 8, (X) = 8 (X — Xg). (41)
By definition,
Vo,  Li(@) = (re, a)c = (rk, Cye]) = (C. 1], o). (42)

Thus it yields the fundamental and general result
WeR, 00 =Culmd00 = [ e mids= L', (0. (43)
In the point-wise case, this is equivalent to
VxeQ, re(X) = Cya (X, X)- (44)

So the representer of the d&tés actually the error covariance function between the mode
elevation error at any positionin the domain and the model elevation error at the #ata
locationxk. This clearly demonstrates the fact that objective analysis (where error covaria
would be given directly for the tidal elevation) is a particular case of the general invel
approach. Th&® matrix is then trivial:

R = [R”] = [Coz,a(xi s XJ)] (45)

Finally, theb coefficients depend only on the model and observation error covariance at
observation locations. More strikinglg,= R + C, represents the total error (model errors
at observation sites plus observational errors) covariance matrix. The new “sea truth
observation locationk is then given by

K
a(Xy) = aprior(xk) + Z by Ca,a Xk, X1) = aprior(xk) + t[Coz,a Xk, XI)](C_leprior), (46)
I=1
where
L€ OXks XD] = [Cara (X X1 - - Cara (X, X1) = - = Cop e Xk, X)]-
In vector form, this can be expressed as

[a(xK)] = [a(xk)]prior +Rb = CilCa [O‘(Xk)]prior + Cilcsda 47)

where pr(x)] = (X1) - - a(X) - - - a2 (Xk)]. A similar expression can be written from the
observation point of view:

[@(xx)] =d — C.b. (48)

From (47), the barycentric-like nature of the new “sea truth” determination is obvious.
conclusion, the assimilation first computes a “best” compromise at observation locati
between observations and the prior model, using arbitrary, prior error covariance. In
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process, both sources of information, i.e., the observations and the prior model, play a
similar role. As a second step, the new model is derived from the observation loca
by using (27). It appears clearly that, away from any observation point, the added te
depend on the arbitrary choice of the domain-wise covariance functions, with restri
control from the first assimilation step. This choice is therefore crucial to the success o
assimilation in terms of general improvement over the modeling domain. In the partici
case of objective analysis, the covariance functions are usually taken to be hat-shape
typical radii of which are based on physical considerations. In the general inverse cast
simply take an additional step which consists in computing the elevation error covarie
functions from the forcing error covariance functions by using the model equations.

2.2.3.The general inverse problemSolving the assimilation problem calls for prior
determination of the data representers. Each representer is determined separately,
will omit the data index in the followingL can be written in the general form

L(a):/u*(x)a(x)ds—i—/ V¥ (X)a(x)dl, (49)
Q FYe!

whereu andv are allowed to Dirac functions. For convenience, an intermediate fungtio
is introduced. This is defined by

n =G Sl (50)

The representaris then defined by the equation

Vo, (r, a)cz/n*S[a]dS+/ r*Co_l[a]d|+/ (MVr -n)*C; MVa - n]dl.
Q d 092

Qo
(51)

M* the adjoint matrix of the matrix operatdt is defined by(u, Mv) = (M*u, v). M* is
the transpose conjugate matrixMf In our case, it can easily be seen that

M* =

(52)

CgH [+ f 1"
Ax | —F =17 —iw+r*|’

The first part of the scalar product is then transformed. Integrating by parts leads to

/n*qa]d5=/(s<>[n])*ads+3f n*Mw.nm_Ef a(M*Vn)*-ndl, (53)
Q Q K Jaq K

R
whereS® defines the adjoint operator 8f
1
] = ;(—Ia)n + V-M*Vnp). (54)

Using the self-adjoint properties of the covariance operators, we can transform the rema
terms of (51) into

/ r*Cytla]dl 4+ [ (MVr-n)*C;HMVa -n]dl
Q0 0Qc

=/ (Cgl[r])*ad|+/ (CSHMVr -n])*MVa - ndl. (55)
920

082
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In order to simplify the following developments, we $¢Va =a, MVr =F, M*Vn =17.
Finally the representeris the solution of the equation

Vo, /,u*ads—i—% viadl :/(So[n])*ozds—i—l% n*a —an®) - ndl
Q Q Q K Jaq
+/ (CMr]) el
9%
+/ (Cc‘l[F~n])*&-ndI. (56)
9%

We seek a suitable solution fgrandr. As the above equation must apply for amyit
can easily be seen that we can separate the surface integral terms from the along-bou
integral terms. Identifying term by term leads to the following two equations:

Va, /M*ad8=/(8<>[n])*ads (57)
Q Q
Va, j{ viadl = E]{ (n*a — an®) - n+/ (Co_l[r])*a dl
a0 K Jaq 8%
~|—/ (Cc‘l[F-n])*& -ndl. (58)
092
From (58) we obtain

S°[n] = . (59)

This equation is a differential equation apdppears to be the response of the adjoint wav
equation to an impulsg. In the context of this paper is the Dirac function associated
with the spatial locatiorxq. The second equation is similar to a boundary condition. Th
boundary condition equation is then considered in two parts (rigid and open boundary).
theoretical problem is now completely defined, and the representer is determined by sol
two successive sets of differential equations with their associated boundary conditions. |
the impulse responsgis determined by solving the system (59) with the correspondin
boundary conditiong =0 on 32, and7 - N = —kv 0N 3. It may be noticed thaj does
not depend on the description of model and data error covariances. Ongeybiem has
been solved, the representer can then be determined by solving the system

Sr] = Giln] (60)

with the corresponding boundary conditions- Co[v + 1/« 7 -n] on 9Q, andf-n=1/
k C¢[n] on €. (27) can be formulated in a different manner as

K
Y0 = Yprior () + > b Ci[md (%), (61)

k=1
which shows that the assimilation solution is that of the wave equation forced by t
prior forcing plus a linear combination of the smoothgedunctions (and also modified
boundary conditions). As a consequence, the conditions of existence and uniquene:
the assimilation solution are similar to those of the solution to the direct hydrodynan
problem.
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2.2.4.Modifying the representers open boundary conditioridnfortunately, the bound-

ary condition involved the gradient gf which is not very well suited to the FE formulation
(due to the pathological noncontinuity of the normal gradient along the element side:
most of the classical polynomial approximations, Lagrange-P2 in our case). In addi
to this fact, more gradient discontinuity may occur if the limits are not straight, due
the fact that the normal and tangential directions are then ill-defined at the limit corn
From experience, direct application of this formulation leads to an inaccurate solutiol
the representer, with significant consequences on the assimilation solution, in the ca
straight limits or not. We therefore wish to transform it for practical reasons. As is sha
in the Appendix, it can be expressed as

VX € 0Qr (X) = / Co. (X, x/)u(x’)ds+/ Co.o O X (X) dl = L(Cyu(X, ). (62)
Q Q2

If we assimilate tidal elevation data (i.e., the image of a function by the observation opelr
L is its value at locatiorxyats), the open boundary condition applied to the represent
associated with the observation locatedat,reduces to

VX € 0Q0,  I'(X) = Cyo(X, Xdata; (63)

Ca.e (X, Xdata) itself can be obtained by solving the system (A4), which is similar to a h
drodynamic system forced only by the open boundaries. This result clearly shows tha
value of the representers along the open limits depends only on the covariance fun
related to the open boundary condition errors propagated inside the domain by the hy
dynamic model. It also explicitly establishes the link between the representer approact
the technigue for open boundary condition optimization described in [4].

3. THE VARIATIONAL FORMULATION

As mentioned previously, the wave equation is solved by its variational formulatit
Considering the Sobolev spakié (2) of the complex-valued functions, the first derivative:
of which are square-integrable in the domgiywe introduce a subspacedf (Q) defined

by
Wio, (Bo) = {B € HY(Q) : B = Bo 0N 3w} (64)

The variational formulation is obtained by integrating the differential equation multipli
by a test functiorg of Wjq, (0) throughout the domain

VB e Wi O, [ p'Slalds= [ pruds (65)
Q

Integrating by parts and considering the boundary conditiong, @) andu leads to the
final variational problem, where the nonflux condition on the rigid boundary is now natu

VB € Wyq, (0), %/iwﬂ*ads—%/Vﬁ*-MVuds
Q Q

_ 5/(;3*& VB MF)ds, (66)
K Ja
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with the boundary conditiorns= «, 0N3$2, (Note that the rigid boundary conditions are now
implicitly included in the tidal elevation problem). In a similar manner to the hydrodynam
formulation, we can derive the final formulation for the variational backward and forwa
problem,

1 1
VB € Wyq, (0), 7/ —iwﬁ*nds—f/Vﬁ“M*VndS
K Ja K Ja
:/,B*MdS—i— B*vdl, (67)
Q IO
with the boundary conditiong=0 ona 2, and

1 1
VB € Wy, (0), ;/iwﬁ*rds——/Vﬂ*.Fds
Q Q

K

- 1
— [ Feimdst 5 /mcﬂ Colnldl, (68)

with the boundary conditions= Cg[v + Klﬁ -n] on 9€2,. As pointed out previously, we wish
to avoid having to compute the gradientpby using the alternative boundary condition
formulation (63). Therefore we need to compute the covariance funcliofXo, Xdata) for
any givenx, belonging to the open boundary. To do so, we build a modetfQ(xo,, X)
considered as a function &f Let us define the functioa

VX € Q, c(X) = G, , (X0, X). (69)

As shown in the Appendix, this is the solution of the system
1. "
Sc]=—-(iwc+V-C) =0, (70)
K

with the boundary conditiong(x) = ¢ (Xo, X) VX € 32, and €-n=0 on 32, where
€=M Vec. Its variational formulation is then

1 1
V,BGW;;QD(O), ;/ |a),3*CdS— ;/ V,B* .¢ds= 0, (71)
Q Q

with the boundary conditions(x) = Cj(Xo, X) VX € 3€2,. In theory, this system has to be
solved for each boundary node, and the solution field must be interpolated at each dat
cation. However, the computational cost can be lowered by computing the impulse respc
(or Green function) of the direct hydrodynamic system once and for all for each bound
node.

4. THE DISCRETE PROBLEM

The hydrodynamic and assimilation problems are now fully described. Discretizati
and solution by computer may been seen as secondary aspects. But this is in fact nc
case, and we intend to point out here some delicate matters involved in discretization. Ir
following, we assume that all quantities to be computed are sought in their discrete fori

() =D onfa(¥)  TOO=D Tafa(X)  n) =D nnPa(X).
N N N
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where{g,} is the set of interpolation functions (for instance P2-Lagrange real-valued pc
nomials) related to the nodes of the finite element mesh. In order to simplify the notat
we will denote

B1(X) ay ry N1
)= a=|: Fe || s=]
Bn(X) an rn N

4.1. Covariance Operator and Scalar Product Discretization

Discretization of the covariance operators may appear to be a minor problem. This i
the case, since we know from experience that rough discretization can have catastr
effects on assimilation. The main reason is the intrinsic relatiorisiig] = L7[ri], which
is exact in theory, but not if the forcing and boundary conditions of the forward proble
derived by applying the error covariance operators, are not handled with care. As ares
unsuitable discretization, tHe matrix is no longer hermitian and the solution of (29) ca
be seriously affected. So the aim of this section is to propose a consistent discretizatit
the covariance operators. By definition,

Cla](x) =/c(x,x’)a(x’)ds= Zan/ c(X, X)Bn(X) ds. (72)
Q N Q

The scalar product related to the covariance opef@tof two discretized elevation fields
is discretized exactly by

(o1, ag)c = / a3 (X)Cla2] (X) ds = @I[(Bm. Bn)c] 2. (73)
Q

Discretization of the covariance operator itself is not an easy matter. Even if it is applie
a Mh-Lagrange function, the image function is not guaranteed to lelzalgrange function
as well. For practical reasons, we would prefer to use a covariance operator which act
preserves the discretization. A full description can be found in the Appendix, and just
main points are given here. Let us define the “covariance ma@igssociated with the
covariancec by

C = [emn] = [c(Xm, Xn)]. (74)
The proper discretized covariance function can then be expressed as

E(x, X) = B*(X)CH(X). (75)
Let us define the real symmetric (hence hermitBmyatrix:

Bn = /Q Bn(X¥)Bi (x) ds. (76)
The covariance operator can then be loosely expressed in a discrete way by

C: & > C[&] = CBa. 7)
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From the discrete formulation of the covariance operator, we can obtain the concise disc
expression of th€-scalar product:

(a]_, az)c = &IBCB&Z. (78)

Because th®& andC matrices are hermitiaBCB is also hermitian. We have described
here the discretization of the covariance operator for the interior (forcing) error which
consistent with model discretization, deno®@ ¢ B in the following. A similar kind of
discretization can obviously be applied to the covariance operators related to the ri
denotedBC.B in the following, and open boundary condition errors, dendigdn the
following. In practice, the smoothing step turns out to be one of the hard parts of 1
assimilation process because of the size of the CB matrix, and it calls for special attent
If the error covariance is assumed to have a normal spatial distribution, the smoott
process can be performed by using a technique based on a diffusion equation (see |
Instead of multiplying thep fields once with a huge, nearly full matrix, this technique
involves multiplying then fields with a narrow band matrix several times (depending o
the required degree of smoothness of error covariance).

4.2. Model Discretization

The subset of8,} related to nodes not located on the open boundary is a basis of
vector space of the second-degree polynomial functions defined over the domain, wi
have a value of zero along the open boundary. The hydrodynamic and assimilation lir
systems are discretized by prescribing any element of this basis to verify the differen
systems separately. The linear system of discrete equations is completed by prescr
the boundary conditions. In practice, it is more convenient as a first step to assemble
whole system without distinguishing boundary and interior nodes and obtain what we
the differential matrix of the forward system,

S=[smn] = {i/(iwﬂ;ﬂn — VB - MBr)a? cosp di dgo} (79)
Q

and the same is true for the right-hand side term:

Y =[ym] = [%/Q (ﬂaﬂ ZN: Fobn— VB - M (%: Fnﬂn)>a2 cosp di drp] . (80)

We also have to apply the open boundary conditions. To simplify notation, we assume
the open boundary nodes are indexed fromNgand the interior and rigid boundary nodes
are indexed\, + 1 to N in the mesh node numbering. The mat&iand the right-hand side
term can be split into blocks as follows:

1 0 oo
S_[Sm Sz.z} and ¥_[f]

For the hydrodynamic system, we get

Si =¥ (81)
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The integrals are computed piece-wise on the mesh elements, by numerical methods
consist of a weighted sum of the value of the function to be integrated at special pc
inside the elements (Hammer formula). Therefore, the gradient involved in the terms be
the integral signs is computed strictly inside the elements and we thus avoid the gra
non-continuity obstacle. Solving the assimilation problem (backwafdrward) does not

involve recomputing any differential matrix. Indeed, if we disregard the specific treatm
due to the boundary conditions, then it can easily be seen that the matrix of the adjoil
the discrete problem is the adjoint matrix (transpose conjugate) of the discrete problel

smn 1 / {—iwBnBiy + VB - M*V By)aZ cosp di dg
e (82)

1 .
= /Q {(iwBBm)* + (MV Bm - VBE)*}a% cosp drde = (Shm)*.

So it is of great interest to save the ove&hnatrix when solving the prior hydrodynamic
system. We describe here the calculus of one representer associated with a data item |
atXqata(i-€., indices relative to the observations are omitted). The discrete backward sy:
is written

1 0 0
Sn=A ith S* = A = ) 83
' " [S’{z %z] {fgﬁrtﬂds-i-jgmcﬁ:vdl 83)

Note that the matrix of the adjoint system is not literally the conjugate transpoSelof
the following, in order to be more explicit, we have to consider two different cases. The
one is where the data are located inside the domain or on the rigid boundary. By defini
the right-hand-side term of the backward problem then becomes

do= [ frnds+ § pivdl = ot (84)
Q 92

It simply represents the value of the interpolation functigpsit the observation location.
We can see here one of the advantages of the variational formulation, which allows
avoid the problem of discretizing a Dirac function. More generally, using the variatiol
formulation blends naturally with classical measurement formalism. It should be noted
the right-hand-side term is equal to zero, except for the interpolation functions attache
the element nodes, including the observation location. The second case is where the
are located on the open boundary. The right-hand-side term then reduces to

A=0. (85)

In this case, the solution foy is zero-valued field. The solution of the forward problen
requires us to compute first its boundary conditions. The corresponding discrete systt
defined by

(86)

Sgn=€ with€= {CC’(X”“’ Xn) } ,

0

wherecy (X) = ¢} ,(Xm, X) andm is the index of the boundary node in question. As it doe
not depend on the data location or value, this system can be solved once and for all b
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computing the entire set of representers. Once this system has been solved, the next <
to compute the representer itself. The discrete system is

Cor.o (X, X
S =V where¥ = s, Xdard (87)

fQ ﬁrTqCI [77] ds+ Kiz fagc ﬁfchc[ﬁ] dl .

4.3. Additional Notes on the Discrete Problem

As it has been brought to our attention, it is interesting to mention an alternative syst
which solution is identical to the above-developed one (Section 4.2). Let us defihe th
vector so that

L*[Bi]
L= LBl |- (88)
L*[Bn]
Let us define the real symmetric (hence hermitiBhjnatrix so that
, 1
n =3 /8 . Bn(X)Bi(X) ds. (89)

The following system, which would be the system to be solved if considering the assimilat
in the discrete space from start (i.e., data assimilation in a discrete model), is exa
equivalent, for any type of linear observation functional, to the one derived in Section 4

1 S5 « mn —
SRR 0
1 0 ri _ n’l .

{52,1 Sz,z} x [rz] = Cr sz] 1)

here

CF:[CO 0 ]

0 (BCiB+B'C.B)
In this case, the matrix of the backward problem is exactly the transpose conjugate of

forward problem. Note thaf, is identical ton,. The full demonstration would be tedious,
but the major points of the derivation are the following:

—the conjugate observation of a discrete field can be expressed as a matrix prod

L*[&] = (XN:% M,ﬁﬁndSJr/mcu*ﬁndsD*

:Zar’ﬁ {/ﬁuﬂ:ds—i-/m vﬂ:ds} =a* xL; (92)
N c
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—due to the interpolation function characteristics, the restrictioh ¢ the inner
nodes and rigid limit’s nodes is equal to the forcing term of the backward problem:

0 0
A= = ; 93
fopinds s o piv0s) = | ©3
—the representer boundary condition vector can be expressed as

mo ey 1 '
=Co[l —S5,(S5,)7 Y xL. (94)

This approach avoid the explicit computation of the representer boundary conditions.
is a (very limited) potential gain in terms of computational costs, because we solve (8€
using the impulse responses of the open boundary nodes, computed at a minor cost
solving the prior solution. More interesting is the possibility to reduce the solving proced:
In practice, we solve the linear systems with a diretk factorization technique. In this

approach, the solution of the backward problem could be based on the factorization o
forward system provided some minor manipulations. Nevertheless, the author still favor
approach consisting in developing the assimilation space, then discretizing because it
a better insight into the assimilation mechanisms. Last but not least, our model is run
global ocean by computing the solution on separate oceanic basins and removing the b
ary condition constraints at the shared limits with a block resolution technique. In this fra
the use of this approach would need further development to compute the glidids.

5. APPLICATION TO THE SOUTH ATLANTIC M, TIDE

The assimilation technique we have just described has been validated and is curr
used by the Grenoble group to produce their global solutions. However, the complexit
the full assimilation model does not allow us to give a clear, simple example. We there
prefer to present an example of the assimilation of tidal gauge data in the Grenoble S
Atlantic model, where forcing and rigid boundary conditions have been assumed t
ideal. Thus the only model parameter involved in the general cost function defined in |
is the term corresponding to the open boundary conditions. There are two motivation:
choosing such atest application: first, we know by experience that open boundary condi
are the main sources of error in our model. Second, we deliberately ignore the vast,
complex, problem of quantifying the error covariance of forcing. As mentioned before,
assimilation procedure calls for fairly accurate information on the various errors, and
open boundary condition errors are probably the parameter we are the most comfor
with. Having said that, it must be recalled that this application is an illustration, and d
not pretend to be a comprehensive, complete assimilation solutiomMfoThe model
design is similar to that used traditionally by the Grenoble group, which is describe
previous publications concerning the solution of this model. In short, the spatial resolu
is constrained with respect to the local tidal wavelength, and increases from 10 km alon
shorelines to a few hundred kilometers in the deep ocean. The bottom topography is de
from ETOPOS5 [25] by the optimal technique described in [4]. The loading/self-attract
potential has been deduced from the Texas tidal model CSR3.0 solutions [26] by O. Fr:
(private communication), using the same technique as in [27]. The CSR3.0 model is de
onaQ5x 0.5 degree grid, with an accuracy for thg solution estimated to be about 1.5 cnr
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in deep ocean. The so-obtained loading/self-attraction potential thus benefits from be
spatial resolution and greater accuracy than thelldegree potential computed originally

in [27]. The open boundary conditions, prescribed at the three open limits with the No
Atlantic Ocean, Indian Ocean, and South Pacific Ocean, have been interpolated from
CSR3.0 model. The friction coefficients are derived by iteratively solving the hydrodynan
model for theM, andK; elevations simultaneously, then deriving the corresponding vel
cities, and reinitializing the friction coefficients with the last obtained velocities (see [2
for more details). After 6 iterations, ensuring the convergence of the friction coefficients,
resultingM, tidal elevation solution is taken as the prior solution. The model is assumed to
quasi-linear around this solution, i.e., the actual nonlinear consequences when perturbin
solution are neglected. The observations were selected from the International Hydrogra
Office databank [29] (coastal data) and from the International Association for the Phys
Sciences of the Ocean (IAPSO) databank [30]. The total dataset contains 61 items, loc
as shown in Fig. 1. The observation error rms has been set to 1 cm for pelagic data,
10 cm for coastal data, assuming no correlation between observation errors. The rir
open limit condition errors has been set uniformly to 2.5 cm, with covariance decreas
exponentially in space. The decorrelation distance has therefore been set to 500 km.
lack of sophistication in these error descriptions is due not only to our desire to keep
application simple enough, but also to the lack of pertinent information. Examination

FIG. 1. Model finite-element mesh. Triangles indicate observation locations.
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the new solution and its posterior covariance is a means of assessing the quality ¢
assimilation in a totally internal way. However, as this application is designed to be
illustration, we wish to demonstrate the efficiency of the assimilation. To do so, we nee
independent source of information to estimate the gain in accuracy of our solution. In a
case, we strongly recommend using all suitable information in the assimilation itself.
reasons are, first, that the assimilation procedure is the best possible information dig
and, second, it is often the case that there are not enough available data to perform t
good assimilation and to compute significant validation statistics. And if there are, this
means that redundant information is available. The fact is that assimilation is the ultir
validation procedure, and splitting a data set between assimilated data and validatior
makes virtually no sense (except of course if the data are of a kind that cannot be used
assimilation). This point of view might appear extreme, butitis entirely justified when mo
and observation errors are of a similar range. Because we use most of the available d
the assimilation process, we must rely on a different type of information to compare
assimilated solution. We therefore chose to compare our solutions with the Desai and \
(DW) M solution [31]. This is derived from harmonic analysis of the TOPEX/POSEIDC
(T/P) altimetric measurements, and therefore is independent of both the data we assir
and our tidal model, and its accuracy is about 1.5 cm in deep ocean fiMthiee. The
amplitude of the prior solution is shown in Fig. 2. Because empirical models derived fr
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FIG. 2. M2 tidal amplitude from the model prior solution. Units are in centimeters.
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FIG.3. Modulus of the complex difference between the prior and posterior solutions. Units are in centimete
Numbers indicate the observation sites listed in Table 1.

T/P are known to be less accurate on shelf areas, we disregard the differences observ
the Patagonian Shelf. The amplitude of the departure of the assimilation solution from
prior one is shown on Fig. 3. The difference between the prior solution and the DW soluti
shown in Fig. 4, reveals two main regions, i.e., the Gulf of Guinea and the northern Wed
Sea, where both solutions differ by more than 5 cm, which come from errors of a simi
range in our prior solution. The difference between the posterior (assimilated) solution :
the DW solution (see Fig. 5) shows a dramatic drop in amplitude, especially in the Gulf
Guinea, which means that the assimilated solution is now much closer to the DW solut
which is an estimate of the sea truth to within 1.5 cm, than the prior solution. Indeed, tt
are so close in most of the basins that it is nearly within the tidal gauge data observa
noise, or error. There are still significant differences in the northern Weddell Sea, wh
could come from either the DW solution (due to poor satellite coverage during the aus
winter) or our solution.

Comparison of the assimilated solution with independent information (the DW mod:
shows that the results of the assimilation are on the whole satisfactory. In a real applica
we should have used the DW model in the assimilation itself as an additional source
observations, so we make the most of the available information we can gather, but leav
independent data to validate the assimilated solution by classical means. We must ther:
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FIG. 4. Modulus of the complex difference between the prior solution and\esolution given in [31].
Units are in centimeters. Numbers indicate the observation sites listed in Table 1.

rely on internal checks to diagnose the results of the assimilation. This internal valida
can be performed by examining first the value of the cost function for the prior model :
the assimilated solution. In our application, the former yields 300% and the latter 17
These numbers represents a departure/noise ratio. For the prior model, the only depar
the data misfit. For the assimilated solution, the departure includes the data misfit plu
departure from the prior model. The first percentage indicates that the prior model is r
than significantly different compared to the observations. The comparison between the
ratios also shows that the assimilated solution is a significant improvement over the |
solution. Also, the prior and posterior costs give us an insight into the consistency in
prior error covariance setting. For instance, the prior cost should be greater than 100%
ideally the posterior cost should approach 100%. One could easily admit that a cost I
than 100% would be physically insignificant (the computed departure would be smaller:
the noise level). This 100% limit also has a statistical justification, which is, in short, t
the cost function should show a chi-squared random variable behavior. One interpret
of this property is that a set of assimilations, performed by using different data, should
to a normalized mean cost function equal or close to the number of data, i.e., a 100% |
In our example, we probably underestimate the model errors and/or overestimate the
errors.
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FIG.5. Modulus of the complex difference between the posterior solution ankllghsolution given in [31].
Units are in centimeters. Numbers indicate the observation sites listed in Table 1.

We can also take a closer look at what is going on at each observation site. It is not the
of this section to give a full analysis, so we have selected a small subset of typical examy
the locations of which are indicated in Figs. 3 and 4. The amplitude, phase, and rms (sq
root of the variance) of the observations, prior model and posterior model are giver
Table 1. First, we wish to check our observation and prior model covariance choices.
prior model variances are the consequence of the error covariance associated with the
boundary conditions. They mainly show an attenuation of the propagated error, except a
#4. The prior model and observation variances are of a similar order, which roughly indice
that, if our description of the model error sources is correct, the prior model is nearly
accurate as the observations. The larger prior model variances appear at sites #5, #6, al
and confirm the previously suspected inaccuracy of the prior solution in the Gulf of Guir
and the northern Weddell Sea. In contrast, the prior model variances are less than 1 c
sites #2, #3, and #8, where our prior solution is very close to the DW solution. Compar
the observation and prior model variances on the one hand, and the computed differ
between both on the other, the numbers are once again very consistent, except at sit
and #6, where the misfit between observations and prior model is much higher than m
be expected if considering the variances. Once again, this occurs where we suspect the
model to be effectively inaccurate. The observed inconsistency might be an indication
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TABLE 1
Amplitude (A), Phase Lag (g), Confidence (rms) of the Observations,
Prior Model and Assimilation Solution

A g rms A g rms A A g rms
1 50.0 94 1.0 55.5 96 2.2 55 50.3 95 1.0
2 16.0 137 1.0 17.0 134 0.5 14 15.0 136 0.1
3 14.5 21 0.5 13.0 22 1.0 14 135 20 0.3
4 245 157 1.0 23.0 168 5.0 4.7 26.0 163 2.3
5 325 268 1.0 355 273 25 4.3 35.5 271 2.9
6 40.0 274 1.0 435 268 1.6 5.8 41.0 297 0.9
7 32.0 80 1.0 34.0 80 0.8 2.2 315 78 0.4
8 22.0 15 1.0 235 9 0.6 2.6 23.0 11 0.3

Note.Amplitudes in cm; phases in degrees; rms in @nis the modulus of the complex difference betweer
observation and prior model elevations.

either the open boundary conditions covariances are not good enough, or that the mode
has a different cause. The variances of the posterior solution also provide useful informa
The posterior variances are of smaller range than the prior observations and model vari
except at site #5, which indicates good overall consistency of our arbitrary choices.
indication of less than a few millimeters confidence is, however, to be treated with caut
but it certainly shows that the assimilation improved tidal knowledge locally. As pointed
previously, the posterior model shows a significant difference in relation to the DW mc
in the north Weddell Sea region. Unfortunately, the two sites which could tell us most al
these discrepancies are sites #5 and #6, and examination of the assimilation diagt
indicates a problem with our prior error description at both sites. As a conclusion for
test, a relatively rough application of the assimilation model gives good, acceptable res
but the prior errors should be more precisely described in order to correct the probl
identified by the internal diagnostics. One possible improvement would be to modulate
confidence prescribed at the open boundary limits, as we know that the accuracy o
CSR3.0 solution is not uniform. The second most likely improvement would definitely
to use a nonzero covariance for the forcing errors. However, it is clear that assimilatic
a complicated application of a simple theory, and special care should be taken alwa
associate pertinent error bars with the scientific products on which we base our model.
databank.

6. DISCUSSION AND CONCLUSION

We proposed here a complete overview of the coupled hydrodynamic and assimilz
tidal model developed by the Grenoble group. The assimilation is based on a generalin
method using arh., norm-type cost function, applied to a linearized model. It shows th
data assimilation can be performed by using a variational formulation that is fully consis
with the hydrodynamic model. In practice, use of the representer approach in penalty f
tion minimization explicitly reduces the dimension of the assimilation problem and avo
inverting the error covariance matrices, which otherwise is a major limitation. Therefor
is possible to achieve more realistic data and model error covariance description with
approach. The assimilation is formulated without considering actual model discretiza
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(until discretization is actually needed for the numerical solution). This allows us to gait
better view of the significance of each step that we take, and, as mentioned above, cle
to identify where and how assimilation can be reduced from an infinite-dimension probls
to a finite-dimension one. An equally important point is the variational formulation of tr
assimilation problem. Not only is it fully consistent with the hydrodynamic model, but
also allows the use of sophisticated mathematical tools and concepts like the Dirac ft
tions and, more generally, is very close to the notions developed for measurement thec
From a practical point of view, we feel much more comfortable dealing with equations tt
handle integrals of a given physical field instead of point-wise values, the significance
which is never clear. This assimilation model has been validated on real applications,
a simplified illustration has been presented in this paper. More generally, it is currer
being used to produce the Grenoble global tidal solutions. Because assimilation techni
are to be used more and more in modern modeling, it seems important to us to insis
the need for a rigorous understanding of the intrinsic assumptions that are to be apr
when choosing a particular type of cost function. Equally, interpretation of the assimi
tion results requires a great deal of caution. In theory, the result of assimilation is the r
“truth,” or more precisely the best unbiased estimator of the truth, obtained by combin
two independent prior items of information. It seems natural to consider that the differel
between the assimilation solution and the prior model solution is an indicator of the pr
model’s accuracy. Even though it seems more difficult to admit, the difference between
assimilation solution and the observations, plus the covariance given by the posterior ma
tells us how accurate the observations that we used are. In some ways, assimilation c:
seen as a formalization of the classical validation process. Moreover, when the accurac
observations and the model are of a similar range, i.e., when the noise level is compar
to the prior difference between the observations and model, the classical validation te
nigue proves to be very difficult to interpret, and only an assimilation technique is able
digest the complete information and summarize it. The quality of the assimilation depe
considerably on the quality of the prescribed prior covariance, which in practice prove:
be one of the major problems of the assimilation process. If there is accurate knowledg
prior errors, our assimilation will also be able to produce accurate information on postel
errors, which could then be used by any modeler taking our results as an input pararn
in his own model. The production and delivery of the error bars attached to a solutior
as important as the solution itself. We believe that the need for better documented dat
well as model results, is one of the critical challenges that the modeling community v
have to face in the future.

APPENDIX: MODIFICATION OF THE REPRESENTER BOUNDARY CONDITION

Because of the linearity of the hydrodynamic system, we can easily establish a mc
for the elevation-related erréix = o — aye due to the input errorss{, o, §®) of the
hydrodynamic tidal modebe is the solution of the system

Fa] = %(i wda +V-MVéa) =8y (A1)

associated with the boundary conditidas= o, 0N 32, andM Véa - n =8P ona2.. We
define the elevation error covariance function throughout the domain, including the domr
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boundaries:
VO X)EQ X R, Cug(X, X) = EGa(X)sa*(X)). (A2)

We note that, , andc, coincide for any(x, xX') belonging tod 2, x 92,. Moreover, for
any givenx, belonging to the open boundary, and considerpg as a function ok, we
definec(X) = Cy.o (X, Xo).

It can easily be shown thatis the solution of the differential system

Vx e, Sclx) = %(i wC+ V- MVC)(X) = Cy (X, Xo) (A3)

associated with the boundary conditiang) = ¢, (X, Xo) ¥X € 32, and M Vc](X) - n(x) =
Co,o VX € 32, Wherecy o (X, X) = E(8y¥ (X)da* (X)), Cp o (X, X) = E(P(X)da*(X)). Be-
causex, belongs to the open boundagy, , (X, Xo) andcy (X, Xo) are the covariance bet-
ween the open boundary condition errors and the closed boundary condition errors, re
tively, the forcing errors. Butsv, da,, @) have been assumed to be independent randc
fields. Soce o (X, Xo) @andcy (X, Xo) are equal to zero. Thus the system reduces to

Sc] = %(i @Cyq +V-MVC) =0 (A4)

associated with the boundary conditiang) = ¢, (X, Xo) ¥X € 325 andM Vc(X) - n(x) =0
Vx € Q2. Using this property,

r (o) = Co [v + }ﬁ : n} (Xo) = Co(Xo, X) (u + Eﬁ : n) xdl
K K

Q0

=/ c*(x)v(x)dl+£/ c*(X) (7 - n)(x) dl. (A5)
9% K Jag,

According to the representer open boundary conditions, we can then transform the se
term:

/ C*(X)(ﬁ-n)(X)dlz/ C*(X)(ﬁ'n)(X)dl—/ c' X)) (@ - n)(x) dl
EIoN Q2 992
:/ c*(x)(?;’-n)(x)dIJrK/ c*(x)v(x)dl. (AB)
0Q 02

We first transform the first term of the right-hand side of (A6). Applying the Gre
theorem and integrating by parts gives

[ eoo@ - meodi = [ [ il ds
Q2 Q
=/c*(x)V-ﬁ(x)ds—/Vc*(x)-ﬁ(x)ds (A7)
Q Q
The differential backward equation gives

/HQC*(X)(Wn)(X)dI =/QC*(X)(Ku+iwn)(X)ds—/Q(VC*(X)~ﬁ)(X)ds (A8)
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We wish to transform the second term of the right-hand side in (A8):
/QVC*(X) i(x)ds= (Vc, M*Vn) = (MVc, Vi) = /Q(MVC)*(X) .Vn(x)ds. (A9)
Applying the Green theorem and integrating by parts gives
/QVC*(X) ‘H(x)ds = /Qv - (()(MVe)*(x)) ds — /Q n(X)V - (MVe)*(x) ds
= /aQ n(x)¢*(x) - ndl — /Q n(X)V - e(x)ds, (A10)

wheret= M Vc. Considering the open boundary conditionsmpand the rigid boundary
conditions orc(x) we note that

/ n(x)c*(x) -ndl = 0. (A11)
a0

Using the differential Eq. (A4) gives

/n(x)V-é(x)ds:/ia)n(x)c*(x)ds (A12)
Q Q
Replacing in (A8) gives
/ c*(X) (1 - n)(x) dl =/C*(X)(K/L+ia)n)(x)ds—/ia)n(X)C*(X)dS
IR Q Q
=/c/ cF(X)u(x)ds. (A13)
Q
Replacing in (A6) gives
/ c*(X)(n - n)(x) dl :/c/c*(x)u(x)ds—i—/c/ c*(xX)v(x) dl. (A14)
320 Q Q2
So finally we obtain the new open boundary condition expression
(00 = [ Cualo 0100+ [ 60000000 A = '@, (ALS)
Q (19
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